Centromere-encoded RNAs are integral components of the maize kinetochore.
نویسندگان
چکیده
RNA is involved in a variety of chromatin modification events, ranging from large-scale structural rearrangements to subtle local affects. Here, we extend the evidence for RNA-chromatin interactions to the centromere core. The data indicate that maize centromeric retrotransposons (CRMs) and satellite repeats (CentC) are not only transcribed, but that nearly half of the CRM and CentC RNA is tightly bound to centromeric histone H3 (CENH3), a key inner kinetochore protein. RNAs from another tandem repeat (180-bp knob sequence) or an abundant euchromatic retroelement (Opie) are undetectable within the same anti-CENH3 immune complexes. Both sense and antisense strands of CRM and CentC, but not small interfering RNAs homologous to either repeat, were found to coimmunoprecipitate with CENH3. The bulk of the immunoprecipitated RNA ranged in size from 40 to 200 nt. These data provide evidence for a pool of protected, single-stranded centromeric RNA within the centromere/kinetochore complex.
منابع مشابه
Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function.
RNAs have been implicated in the assembly and stabilization of large-scale chromatin structures including centromeric architecture; unidentified RNAs are integral components of human pericentric heterochromatin and are required for localization of the heterochromatin protein HP1 to centromeric regions. Because satellite repeats in centromeric regions are known to be transcribed, we assessed a r...
متن کاملA maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore.
Genes for three maize homologs (CenpcA, CenpcB, and CenpcC) of the conserved kinetochore assembly protein known as centromere protein C (CENPC) have been identified. The C-terminal portion of maize CENPC shares similarity with mammalian CENPC and its yeast homolog Mif2p over a 23-amino acid region known as region I. Immunolocalization experiments combined with three-dimensional light microscopy...
متن کاملDNA Binding of Centromere Protein C (CENPC) Is Stabilized by Single-Stranded RNA
Centromeres are the attachment points between the genome and the cytoskeleton: centromeres bind to kinetochores, which in turn bind to spindles and move chromosomes. Paradoxically, the DNA sequence of centromeres has little or no role in perpetuating kinetochores. As such they are striking examples of genetic information being transmitted in a manner that is independent of DNA sequence (epigene...
متن کاملDetrimental incorporation of excess Cenp-A/Cid and Cenp-C into Drosophila centromeres is prevented by limiting amounts of the bridging factor Cal1.
Propagation of centromere identity during cell cycle progression in higher eukaryotes depends critically on the faithful incorporation of a centromere-specific histone H3 variant encoded by CENPA in humans and cid in Drosophila. Cenp-A/Cid is required for the recruitment of Cenp-C, another conserved centromere protein. With yeast three-hybrid experiments, we demonstrate that the essential Droso...
متن کاملDrosophila CENP-A Mutations Cause a BubR1- Dependent Early Mitotic Delay without Normal Localization of Kinetochore Components
The centromere/kinetochore complex plays an essential role in cell and organismal viability by ensuring chromosome movements during mitosis and meiosis. The kinetochore also mediates the spindle attachment checkpoint (SAC), which delays anaphase initiation until all chromosomes have achieved bipolar attachment of kinetochores to the mitotic spindle. CENP-A proteins are centromere-specific chrom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 45 شماره
صفحات -
تاریخ انتشار 2004